Any motion of charges is electric current by definition. The electric potential field can also move the electric charges and this work of the potential field is not connected with loss of power. So, it is enough to use the electrical field (scalar potential source) to create the power and work in an electric load circuit.
The classic conception does not explain this paradox but states: 'The
total work of the potential field along a closed trajectory is equal to
zero." That is correct, sure. But there are simple descriptions of
experiments for application of potential field energy to create power
in a load [1]. The present paper
develops this concept from another view.
So, the motion of charged particles is the current. But there are both
the wattful current and wattless
current. To create the free energy system it is necessary to transform
the wattless current to wattful
current.
What is the difference in those two versions of current? When the charged
particles are moving along wire thanks to electromotive force of potential
difference, it is not the reason for loss of power in the source because
the electric field of the primary source provides the work to move charged
particles without any power loss. A closed electrical circuit is the reason
to consume the potential difference of the source. It is possible to separate
the load current from source circuit. Dr. T.E. Bearden made detailed description
of a concept for this technology by means of note for "the
massless current" [2]. Massless current is the wattless current, from
my point of view.
It is possible to consider such current as oscillations of a field of free electrical charges (3]. In this case the wattless current is described as displacement current or as longitudinal wave of the electrical field.
Let's consider a simple experiment to prove the possibility of power
transmission by means of
displacement current. The equipment that I used:
1) Generator, output voltage is 30 Volts, frequency is 10 KHz or more.
2) Electromagnetic transformer to increase the output voltage from
30 Volts to several kiloVolts (2-5 kV in my scheme).
3) Diodes are connected as shown on Figure 1. This diodes connection
is so-called "Avramenko's plug" [4].
I used a spark distance from 0.5 to 1 mm. The frequency of spark discharges in my experiment varied from 1 Hz to 10 Hz. It is possible to calculate the work for one discharge by means of next formula:
For power we can use the formula:
where f is frequency of spark discharges.
So, for this simple "home laboratory" experiment when the voltage V
= 2 KV, capacity C =10 nanoFarad, and f = 5 Hz, the P is equal to 0.1 watt.
The consumed power is equal to 3 watts DC (0.1 A and 30 V). Therefore,
power in a closed circuit of load is about 3% of consumed power in this
experiment. But this small power is free since it is not connected with
conduction current in source circuit. There is only wattless displacement
current in single-wire part of the system.
For high frequency version it s possible to use the voltage near 30 V and the frequency of generator more than 100 KHz. Simple electric lamp can be used as load of the "Avramenko's plug" in this version. By Avramenko, the conduction current is load is 60 mA when voltage V =50 Volts and frequency of generator is 100 KHz [4]. So, load power in Avramenko's experiments is equal to 3 Watts.
From my experiments, it is possible to make some conclusions:
1. When the output signal is a sine wave there is no difference for
wires of secondary coil of transformer and any wire can be connected to
diodes. In any case, the power in load is the same. But when the output
signal is unipolar pulses (from output of transistor scheme, for example)
there is important difference for wires of coil. When the diodes are connected
to positive pulsed pole of coil the power in load is maximum. The same
difference is easy to verify if one is to bring metal material to end of
wires of high voltage coil of transformer. The discharge between metal
and positive pulsed wire is more powerful than discharge between
metal and other wire of the coil.
This note can be explained in conception of longitudinal waves as waves
of electron gas in matter.
When the positive potential take place on the wire the electrons of
metal are attracted to positive potential. The spark discharge between
metal and wire takes place here since electrons of metal can "jump" from
metal into positive charged end of coil wire. In opposite case, electrons
of metal are in repulsion from negative charged end of the coil wire. There
is no condition for electrons to "jump" in this case. So, positive pulses
of potential field can lead to conduction current. In a metal piece, the
"jumped electrons" are compensated by electrons from air. In
a closed circuit that uses the Avramenko's plug," electrons can be moving
only in one direction and it is the reason for producing work in the load.
2. To increase the power in the load, it is necessary to develop that part of the scheme that is responsible for the displacement current. The output power of the generator is not important. Small power is enough to create the wattless current. The question of power in load is the question of amplitude. It is possible to create high values of amplitude for a longitudinal wave of displacement current in a resonance mode.
3. The principle, in general: the electric potential field is the cause
for free wattless movement of charged particles (electrons or ions). This
movement can be used for power generation. Most
interesting is the correlation of this experiment with known
electric induction phenomenon. The
development of such technologies is most favorable in this direction,
I think.
Finally, I must note that N. Tesla demonstrated the transmission of power along a single wire in London in 1892 [4]. Now all we need is the real interest of industry and official science to this well-known technology for clean power generation by means of potential source.
References
1. A.V. Frolov, "The Application of Potential Energy for Creation of
Power, New Energy News, vol. 2, no 2. May 1994.
2. T. E. Bearden, "Overunity Electrical Power Efficiency Using Energy
Shuttling Between Two Circuits," Proceedings of the 2nd international
New Energy Symposium, Denver, Co, May 13-15. 1994.
3. "New Electric Transmission," summarized by Igor Goryachev, New Energy
News, vol. 2, no 6, October 1994.
4. N.E. Zaev, S.V. Avramenko, V.N. Lisin, "The Measuring of Conduction
Current That is Stimulated by Polarization Current," Journal of Russian
Physical Society, no 2, 1991. Russian Text.