ATOMIC HYDROGEN HEAT GENERATOR

Alexander V. Frolov

2013

Aim

- It is planned to produce experimental unit of high efficient heat generator.
- This method use hydrogen dissociation recombination processes in closed volume of reactor. There is no radiation here.
- We have to patent it and start sales of licenses.
- In collaboration with industrial partners we can organize production facilities to fabricate high efficient heat generators for sale.

Product

- Product is new method to provide generation of heat and equipment using this technology.
- Application:
 - Homer heating 10 kW 30 kW.
 - Industrial needs 30 kW 100 kW.
 - Power engineering 1 MW 100MW.

Market

- Main market is home and industrial water heaters.
- Secondary market is electrical power plants using hot steam source for turbines.
- World market is about 15 Billion Euro + 3% year.
- It is planned to reach 1% of World market in 5 years.
- In 2016 sales can be about 165 Million Euro.

Problems of market

- Traditional boilers require a lot of electric energy.
- Fuel and electricity are not low cost.
- Customers are seeking energy saving methods.
- There is demand in energy sources for space projects and new areas of the planet, where is not possibility to provide fuel.
- World economics require new markets.

The idea

- Hydrogen molecule dissociation require energy input to get two atoms of hydrogen.
- Two Hydrogen atoms can be recombined into one molecule with great heat output.
- High efficiency of this processes (excess heat output) is possible if we'll use low-energy method of dissociation of hydrogen.

How to use atomic hydrogen

- There are two main methods to use atomic hydrogen for heat generation:
 - It is possible to get heat directly during recombination process H+H = H2+Q on surface of catalizator (for example, tungsten).
 - Other way is transmutation method, for example, according Prof. Rossi technology it is possible to get great heat output transforming nickel to copper Ni + H = Cu + Q

Present stage of the project

 Project in development, photo of 2003. Experiments were made and we have got positive conclusion about excess heat output.
 Theoretical efficiency was 83 to 1 in this design of reactor.

Prof. Bongefer 1927

Old method: Gas mixture H2 + Hg Resonance excitation by means of light

New technical solution

- Working body is mixture of hydrogen and xenon.
- Dissociation of hydrogen is stimulated by resonance wave length light source. Recombination of atomic hydrogen will produce excess heat output.

Discharge method

- Other method: barrier electric discharge in xenon & hydrogen gas mixture.
- Heat absorption is possible by tungsten layer on the pipe of heat exchanger.

Recombination

Catalizator (tungsten) is necessary to provide optimal conditions of recombination process
 H+H = H₂ +Q

Applications

Home heating systems (boilers)

Industrial heating equipment, large heat sources

Analogies

- Italian team (Andrea Rossi). Efficiency was reported about 3000% (400 W input can provide 12 kW heat).
- The reactor also use catalizator and nickel powder saturated by hydrogen with 70 Atm pressure.
- Ni to Cu transmutation was reported.

July 20, 2011 this team reported about contract on 1MW power plant for Greece.

Our advantages

- Our technology does not require spending of the catalizator.
- Rossi use cold fusion reaction of transformation Ni to Cu. Also reactor require hydrogen input and recharging.
- Ni and Hydrogen are fuel in this case.
- In closed cycles of dissociation recombination there is not waste of materials, here is no fuel.
- Efficiency of the proposed technology can be much more better than Rossi' process.

Stages of project

- 2003 2005 was invested 50,000 USD.
- Patent was applied in Russia but failed.
- Experimental equipment was exported to London and Sydney for testing. There are skeptical data.
- Next stage prototype require to be designed, tested and new method can be patented.
- In 2014 we can start sales of licenses.
- Production facilities (home boilers and industrial heat sources) can be started in 2015.

Partners

 We can organize new stage of projects with EU partners.

2003 projects was joint work with Spectrum company, Dr. Nicholas Moller. Photo of his lab, UN visitors.

Financial Plan (Euro)

		Period	Expenses	Income
1	Prototype building	5 months	40,000	-
2	Testing	1 month	20,000	-
3	Patent	6 months	30,000	-
4	Sales of license	2013	-	1 Mil. Euro
4	Production facilities	2014	500,000	5 Mil. Euro

Investments 90,000 Euro, 51%. Investor ROI (exit in 2015, third year of the project). ExitValue = 12,500,000Euro Discount factor R = 50% StartValue = 1,925,925 Euro ROI = 100% (1,925,925/90,000)=2140%

Proposal for investor

■ Funds required 90,000 Euro.

Team:

Investor	51%
 Founder 	39 %
 Author 	5 %
Top managers	5%

Exit strategy is sale of company to energy corporation.

Founder

Alexander V. Frolov

+7-910-948-2509

Skype alexfrolov2509 a2509@yahoo.com